

MAHARAJA RANJIT SINGH PUNJAB TECHNICAL UNIVERSITY BATHINDA-151001 (PUNJAB), INDIA

(A State University Estb. by Govt. of Punjab vide Punjab Act No. 5 of 2015 and Approved u/s 2(f) & 12 (B) of UGC; Member AIU)

Department: <u>CIVIL ENGINEERING</u> Giani Zail Singh Campus College of Engineering & Technology, MRSPTU Bathinda

Program: <u>B Tech Civil Engineering (1107)</u>

COURSE ARTICULATION MATRIX (STUDY SCHEME: 2018)

Subject	Subject Code	Semester	Credit	Duration (Hrs)	LTP	SOD	Statement	10d	P02	£04	P04	50d	90d	20d	80d	60d	PO10	P011	P012	PSO1	PSO2	EOSd
						C01	Understanding the concepts of Friction, Stress, Hook's Law, Forces, Strain Energy and Yield criteria.	3	3	3	-	2	1	2	1	2	1	1	2	3	1	2
ics	-101				0	C02	To analyze and solve problems of simple harmonic Oscillator and damped oscillators.	3	2	3	3	3	-	2	1	2	1	1	2	2	-	2
Physi	врнуо	1	4	43	31(CO3	Apply knowledge of vector mechanics to study forces in nature.	2	2	3	-	2	1	-	2	2	1	-	3	3	2	2
						CO4	To study concepts of frames of references and rigid body dynamics.	3	3	2	3	2	1	2	-	2	1	1	-	2	1	2

						CO1	To apply differential and integral calculus to notions of curvature and to improper integrals. Apart from some other applications they will have a basic understanding of Beta and Gamma functions.	1	2	1				 	 	-		1	1	
natics-l	0-101				0	C02	The fallouts of Rolle's Theorem that is fundamental to application of analysis to Engineering problems	2	3	1				 	 			2	1	
Mathem	BMAT	1	4	40	3 1	CO3	The tool of power series and Fourier series for learning advanced Engineering Mathematics.	2	2	2	1			 	 			1	2	
						CO4	To deal with functions of several variables that are essential in most branches of engineering.	2						 	 				1	
						CO5	The essential tool of matrices and linear algebra in a comprehensive manner	2			2		1	 	 			2	1	
						C01	Introduction to engineering design and its place in society	3	2	3		3		 1	 		3	2	-	1
ESIGN						C02	Exposure to the visual aspects of engineering design	2	2	2		3		 1	 		3	2	1	-
ICS & D	01					CO3	Exposure to engineering graphics standards	2	2	3		3	-	 1	 		3	1	1	1
GRAPH	AEE0-1	1	1	12	100	C04	Exposure to solid modelling	3	3	3		3		 1	 		3	1	-	-
NEERING	BN					CO5	Exposure to computer-aided geometric design	3	3	3		3		 1	 		3	2	2	1
ENGI						C06	Exposure to creating working drawings	3	3	3		3		 1	 		3	2	1	1
						C07	Exposure to engineering communication	2	2	2		3		 1	 		3	2	1	1

ERING						C01	To understand and analyze basic DC and AC circuits.	2	3	-	_	-	-	-	_	-	-	-	1	-	-	3
ENGINEE	101				0	C02	To study the use and working principle of single-phase transformers.	2	-	-	-	-	3	-	-	-	-	-	1	3	-	-
ELECTRICAL	BELEO-	1	4	42	310	CO3	To study the application and working principles of three phase and single-phase induction motors.	2	-	-	-	-	3	-	-	-	-	-	1	3	-	-
BASIC I						CO4	To introduce to the components of low voltage electrical installations.	2	-	-	-	-	3	-	-	-	-	-	1	3	-	-
						C01	Student will able to study motion of flywheel, bar pendulum and kater's pendulum.	3	3	-	-	2	1	2	-	2	1	1	2	3	1	2
						C02	Students shall gain knowledge about torsional pendulum and various factors related with this.	2	-	3	2	3	-	2	1	-	1	1	-	2	-	2
Physics Lab	ВРНУО-102	1	1.5	-	003	CO3	Students will able to determine the Elastic Constants/Young's Modulus of a Wire by Searle's method and Modulus of Rigidity of a Wire by Maxwell's needle	2	1	2	-	2	1	-	2	2	1	-	3	2	_	2
						CO4	Students will Study variation of Momentum, Kinetic energy, Velocity of collision of the objects and the Center of Mass with different velocity and mass.	2	3	-	3	2	1	2	-	2	1	1	-	2	1	2
ting Design	102	1	2	60		C01	Introduction to engineering design/draw and its place in society	3	2	3		3			1				3	2	-	1
IGINEEF HICS &	MEE0-3				004	СО	Exposure to the visual aspects of engineering design/drawing	2	2	2		3			1				3	2	1	
EN GRAP	BI					CO3	Exposure to engineering graphics standards	2	2	3		3			1				3	1	1	1

						CO4	Exposure to solid modelling	3	3	3		3			1				3	1	-	
						CO5	Exposure to computer-aided geometric design	3	3	3		3			1				3	2	2	1
						C06	Exposure to creating working drawings	3	3	3		3			1				3	2	1	1
						СО	Exposure to engineering communication	2	2	2		3			1				3	2	1	1
ering						C01	Get an exposure to common electrical components and their ratings.	2	-	-	-	-	3	-	-	2	-	-	1	-	3	-
Engine	102					C02	Make electrical connections by wires of appropriate ratings.	2	-	-	-	-	3	-	-	2	-	-	1	2	3	-
Electrical Lab	BELEO-1	1	1	-	002	CO3	Understand the usage of common electrical measuring instruments.	2	-	-	-	-	3	-	-	2	-	-	1	-	3	-
Basics I						CO4	Understand the basic characteristics of transformers and electrical induction motors.	2	-	-	-	-	3	-	-	2	-	-	1	-	2	3
:m, ention						C01	Differentiate between physical and psychological dependence of drug abuse.	-	-	-	-	-	1	1	-	-	-	-	-	-	-	-
e: Proble and Prev	10-104	1	0	20	0 0	C02	Understand the consequences of drug abuse.	-	-	-	-	-	1	1	-	-	-	-	-	-	-	-
rug Abuse igement a	BHUN	1	0	50	3 (CO3	Explain prevention of drug abuse.	-	-	-	-	-	1	1	-	-	-	-	-	-	-	-
D Mana						CO4	Identify treatments and management of drug abuse.	-	-	-	-	-	1	1	-	-	_	-	-	-	-	_
ISTRY-I	10-101	2	Δ	42	10	C01	Analyze microscopic chemistry in terms of atomic and molecular orbitals and intermolecular forces.	3	-	-	-	-	-	-	-	-	-	-	1	3	-	-
CHEM	BCHN		7	ΤL	3	C02	Rationalize bulk properties and processes using thermodynamic considerations.	3	1	-	-	-	-	-	-	-	-	-	1	3	-	-

						CO3	Distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques	3	1	-	-	-	-	-	-	-	-	-	1	3	-	-
						CO4	Rationalize periodic properties such as ionization potential, electronegativity, oxidation states and electronegativity.	3	1	-	-	-	-	-	-	-	-	-	1	3	-	-
						202	List major chemical reactions that are used in the synthesis of molecules	3	-	-	-	-	-	-	-	-	-	-	1	3	-	-
						C01	The mathematics tools needed in evaluating multiple integrals and their usage.	3	1	1	1	2	1	-	1	-	-	-	2	1	2	1
HEMATICS-II	1AT0-201	2	4	40	310	C02	The effective mathematical tools for the solution of differential equation that model physical process.	2	1	2	2	2	1	-	-	1	-	-	2	1	2	1
MAT	ΒΛ					CO3	The tools of differentiation and integration of functions of a complex variable that are used in various techniques dealing engineering problems	2	2	1	1	1	2	-	2	2	-	-	1	2	2	1
 -	.01					C01	The student will acquire basic proficiency in English including reading and listening comprehension, writing and speaking skills.	2	1	2	-	1	2	1	1	1	3	1	2	2	-	2
ENGLISI	BHUM0-1	2	2	25	200	C02	Student should be able to write essay, reflective writing in a variety of formats.	1	1	2	-	-	1	-	-	1	3	1	2	-	-	-
						CO3	To provide an overview of the various phases of the evolution of Indian writing in English.	1	1	1	1	-	1	1	-	1	2	1	2	1	-	-

ROBLEM	1					C01	To learn the basic terms related to programming and understand arithmetic expressions.	-	-	-	1	-	1	I	Т	Т	-	-	3	3	-	3
ING FOI	SE0-10	2	5	51	304	C02	To understand the concept of arrays.	3	-	3	-	2		-	-	-	-	-	-	-	1	-
RAMM S	BC					CO3	To implement functions and recursion.		3	-	2	-	-	-	-	-	3	-	-	-	2	-
PROG						C04	To learn structure, pointers and file handling.	3	-	-	2	-	-	-	-	-	-	-	-	3	-	-
AB						C01	Estimate rate constants of reactions from concentration of reactants/products as a function of time	3	2	-	-	-	-	-	-	-	-	-	-	2	1	1
CHEMISTRY-I L	BCHM0-101	2	1	-	002	C02	Measure molecular/system properties such as surface tension, viscosity, conductance of solutions, redox potentials, chloride content of water, etc.	3	2	-	-	-	-	-	-	-	-	-	-	2	1	1
						CO3	Synthesize a small drug molecule and analyze a salt sample	3	-	3	-	-	-	-	-	-	-	-	-	2	1	1
AB	02					CO1	Better Pronunciation and accent	2	1	2	-	-	1	1	-	2	2	-	2	2	-	2
BLISH L	UM0-1	2	1	-	0 0 2	CO3	Ability to use functional English	1	-	1	-	-	-	I	1	1	1	-	1	2	-	-
EN	ВН					CO4	Competency in analytical skills and problem solving skills	2	2	1	1	1	2	1	1	1	2	-	1	2	-	2
IING FOR -VING LAB	102				t	C01	To learn the basic terms related to programming and understand arithmetic expressions.	-	-	-	1	-	1	-	-	-	-	-	3	3	-	3
JGRAMN	BCSE0-	2	2	-	700	C02	To understand the concept of arrays.	3	-	3	-	2		-	-	-	-	-	-	-	1	-
PRC PROE						CO3	To implement functions and recursion.		3	-	2	-	-	-	-	-	3	-	-	-	2	-

						CO4	To learn structure, pointers and file handling.	3	-	_	2	-	-	-	-	-	-	-	-	3	-	-
JRY & LAB.)						C01	Gain knowledge of different Manufacturing processes and related aspects which are commonly used	2	1	-	1	-	-	-	1	2	1	-	1	1	1	-
ACTICES (THEO	:P0-101	2	3	80	l 0 4	C02	Get practical knowledge of dimensional accuracy and tolerances inapplicable in manufacturing applications	1	1	1	-	1	-	-	-	1	-	-	-	-	-	-
ACTURING PR	BMF					£03	Able to fabricate components with own hands using hand tools, machinery and equipments	1	1	-	-	-	-	-	-	2	-	-	-	-	-	-
MANUF						C04	By using different components be able to make small product assemblies	1	-	-	-	-	-	-	-	1	-	-	-	-	-	-
L ETHICS						C01	Understand the concept of human values as social fact. Clarity about different universal values and value systems relevant to professions and work.	-	-	-	-	-	-	1	3	2	-	-	3	-	-	-
ND PROFESSIONA	UM0-103	2	0	30	300	C02	Discern the meanings of values, morality, ethics and their relationship with religion. Able to make sense of some significant related theories.	-	-	-	-	-	-	1	3	2	-	-	3	-	-	1
JMAN VALUES AI	BH					£03	Realize the relevance of Professional ethics and virtues at the workplace and their importance for the benefits of society at large.	-	-	-	-	-	-	2	3	2	-	-	3	-	_	1
н Н						CO4	Appreciate the judicious use of Technology and social laws for the conservation of environment and consequently	-	-	-	-	-	-	2	3	2	-	-	3	-	-	1

							for the welfare of the humanity.															
						C01	Analysis of various switching characteristics of PN junction devices and its applications	3	2	2	2	2	1	-	1	1	1	-	1	1	1	-
nics	1					C02	Recognize the importance of Bipolar junction transistors and Unipolar junction transistors.	3	2	2	2	2	1	-	1	1	1	-	1	1	1	-
3asic Electro	BECEE0-00	3	1	15	100	£03	Conceptualize the transistor amplifier and oscillator circuits for various electronics applications	3	2	2	2	2	1	-	1	1	1	-	1	1	1	-
						CO4	Understanding and analysis of the characteristics of operational amplifiers and identify its internal structure	3	2	2	2	2	1	-	1	1	1	-	1	1	1	1
						CO5	Development of basic understanding for various electronics circuits.	3	2	2	2	2	1	-	1	1	1	-	1	1	1	-
RAWING						C01	Develop Parametric design and the conventions of formal engineering drawing	3	-	3	-	-	-	-	-	-	-	-	-	3	3	-
ERING DF						C02	Produce and interpret 2D & 3D drawings	-	-	2	3	-	-	-	-	-	-	-	-	3	3	-
'IL ENGINE	IESI-301	3	1	15	100	£03	Communicate a design idea/concept graphically/ visually	2	-	-	-	-	2	-	-	-	-	-	-	3	-	3
COMPUTER AIDED CIV	BCI					C04	Examine a design critically and with understanding of CAD - The student learns to interpret drawings, and to produce designs using a combination of 2D and 3D software.	_	-	3	-	-	2	_	-	_	-	2	-	3	_	_

						CO5	Get a Detailed study of an engineering artifact	3	-	-	-	-	-	-	-	-	-	-	2	3	-	1
ANICS						C01	Confidentlytackleequilibriumequations,momentsandinertiaproblems	2	-	_	_	-	-	-	-	-	-	-	-	2	-	_
EERING MECH	BMECE0-001	3	4	60	310	C02	Master calculator/computing basic skills to use to advantage in solving mechanics problems.	-	3	-	-	-	-	-	-	-	-	-	-	-	3	-
ENGIN						CO3	Gain a firm foundation in Engineering Mechanics for furthering the career in Engineering	2	-	-	-	-	-	-	-	-	-	-	1	-	3	-
JEERING						C01	The objective of this Course is to provide an introduction to energy systems and renewable energy resources, with a scientific examination of the energy field and an emphasis on alternative energy sources and their technology and application.	-	_	-	_	_	2	3	-	_	_	-	1	3	2	2
ENERGY SCIENCE & ENGIN	BCIESI-302	3	2	30	200	CO2	The class will explore society's present needs and future energy demands, examine conventional energy sources and systems, including fossil fuels and nuclear energy, and then focus on alternatives, renewable energy sources such as solar, biomass (conversions), wind power, waves and tidal, geothermal, ocean thermal, hydro and nuclear.	_	_	3	_	_	3	3	_	_	_	_	_	2	2	3

						CO3	Energyconservationmethods will be emphasizedfromCivilEngineeringperspective.	-	-	-	-	-	3	3	-	-	-	-	-	2	2	2
						CO4	The knowledge acquired lays a good foundation for design of various civil engineering systems/ projects dealing with these energy generation paradigms in an efficient manner.	-	_	-	_	2	2	3	_	-	_	_	_	3	2	2
						CO1	Carry out preliminary surveying in the field of civil engineering applications such as structural, highway engineering and Geo technical engineering plan a survey.	2	1	1	1	-	-	-	_	-	-	-	-	2	2	-
SURVEYING	BCIESI-303	3	2	30	200	C02	Takingaccuratemeasurements,fieldbooking,plottingadjustmentoftraverseusevariousconventionalinstrumentsinvolvedsurveyingwithrespecttoutility.utility.	-	2	-	-	2	_	-	-	-	-	-	-	1	2	-
						CO3	Precisely plan a survey for applications such as road alignment and height of the building undertake measurement and plotting in civil engineering.	-	1	2	1	2	1	-	-	-	-	-	-	-	1	1
MATICS-III sform &	-H4-301	3	2	30	0 0	C01	Students will able to assessdifferenttypetypeofTransformations	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-
MATHEI (Trans	BMAT				2	C02	Understand the concept of set theory	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-

						CO3	Get the the knowledge of basic algebraic structure of group and ring theory	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-
						C04	Understand the concept of counting	1	-	-	-	-	-	-	-	-	-	-	-	-	-	1
						CO5	Able to assess graphs and its properties	-	1	-	-	-	-	-	-	-	-	-	1	-	-	-
e Technical n)						CO1	Students will be enabled to understand the nature and objective of Technical Communication relevant for the work place as Engineers.	2	-	-	-	-	-	_	3	-	3	_	2	2	-	2
ES-I (Effectiv	3HSMC0-005	3	3	45	300	CO2	Students would imbibe inputs by presentation skills to enhance confidence in face of diverse audience	2	-	-	-	-	-	-	3	-	-	-	2	-	-	-
HUMANITI						CO3	Technical communication skills will create a vast know-how of the application of the learning to promote their technical competence.	1	2	-	-	-	-	Ι	3	-	3	Ι	2	1	-	2
GINEERING						CO1	Identifying the various areas available to pursue and specialize within the overall field of Civil Engineering.	-	-	-	_	-	-	1	-	-	-	2	-	3	-	-
ON TO CIVILENC	BHSMC0-021	3	3	45	300	C02	Understanding the vast interfaces with the society at large & providing inspiration for doing creative and innovative work	2	-	-	-	-	2	-	-	-	-	-	-	3	3	-
INTRODUCTI						CO3	Showcasingthemanymonuments,heritagestructures,etc.andimpressiveprojectstoserveas sources of inspiration.	-	-	-	-	-	2	-	-	-	-	1	-	2	-	-

						CO4	Highlighting possibilities for taking up entrepreneurial activities in this field.	-	2	-	-	-	-	-	-	-	-	2	-	3	2	-
						202	Providing a foundation for the student to launch off upon an inspired academic pursuit into this branch of engineering.	-	-	-	-	-	3	-	-	-	-	2	-	3	-	-
LAB						C01	An ability to conduct experiments related to Bipolar junction transistors and Unipolar junction transistors.	3	2	2	2	2	1	-	1	2	2	1	1	1	1	-
TRONICS	E0-002	3	1	30	0 2	C02	Estimate and Analyze the various Characteristics of Diode and Transistor.	3	2	2	2	2	1	-	1	2	2	1	1	1	1	-
BASIC ELEC	BECE				0	CO3	Design and formulate the performance of various Amplifier and Oscillator circuits.	3	2	2	2	2	1	-	1	2	2	1	1	1	1	-
						CO4	Understanding the importance of measuring devices.	3	2	2	2	2	1	-	1	2	2	1	1	1	1	1
ed civil Wing lab	14					C01	Design and draw working structural drawings of various concrete structures and their members.	-	-	3	-	3	-	-	-	-	-	-	-	3	-	2
TER AIDE ING DRA	CIES1-30	3	1	30	0 0 2	C02	Understand and interoperate design aids and handbooks.	-	-	_	3	_	-	_	-	-	3	-	2	3	-	-
COMPU ENGINEER	B(CO3	Use of relevant Indian Standard specifications applicable to Reinforced concrete structures	3	-	2	-	-	-	-	-	-	-	-	-	-	3	-
SURVE YING	BCIES	3	2	60	004	C01	Surveying of an area by chain survey (closed traverse) & plotting.	1	1	-	-	2	-	-	-	1	1	-	-	1	-	2

						C02	Survey of a given area by prismatic compass and surveyor compass and plotting after adjustment.	1	1	-	-	2	-	-	-	1	1	-	-	1	-	2
						CO3	Radiationmethod,intersectionmethodsbyplane table survey	1	1	-	-	2	-	-	-	1	1	-	-	1	-	2
						CO4	Two point and three point problems in plane table survey.	1	1	-	-	2	-	-	-	1	1	-	-	1	-	2
						CO5	Leveling – Longitudinal and cross-section and plotting	1	1	-	-	2	-	-	-	1	1	-	-	1	-	2
						СО	Trigonometric leveling using Theodolite.	1	1	-	-	2	-	-	-	1	1	-	-	1	-	2
						C07	Height and distances using principles of tacheometric surveying	1	1	-	-	2	-	-	-	1	1	-	-	1	-	2
						CO8	 a. Measurement of Horizontal angle & vertical angle. b. Distance between inaccessible point by theodolite 	1	1	-	-	2	-	-	-	1	1	-	-	1	-	2
PI PI	2					C01	Explain fundamental thermodynamic properties.	3	2			2	2	2	2					1	-	-
ECHANIC/ GINEERIN	MECE0-00	4	3	45	210	C02	Derive and discuss the first and second laws of thermodynamics.	3	3	3	3	3	2	3	3	3		2	3	2	-	-
ΣÄ	BI					CO3	Derive and discuss vapor power cycles and gas power cycles.	3	2	2	3	3	3	2	2	3		3	3	2	-	-

						C04	Explain the working of refrigeration processes andpsychometric properties.	3	3	3	3	3	3	2	2	2		3	2	2	1	
DUGIES						C01	Technologies based on fundamentals of measurements, sensing and instrumentation.	3	3	2	2	1	1	1	1	-	1	-	1	1	1	-
R TECHNC						C02	Development of basic understanding for measuring instruments and sensors.	3	3	2	2	1	1	1	1	-	1	-	1	1	1	-
IN & SENSOF	BCIES1-401	4	2	30	200	CO3	Identify the technologies involved in installation and operations of various types of sensors.	3	3	3	3	2	1	1	1	-	1	-	1	1	1	-
MENTATIC CIVIL ENG						C04	Explain the importance of interpretation and analysis of sensor data.	3	3	2	3	2	1	1	1	-	1	-	1	1	1	1
INSTRUN						CO5	Implementation and discussion on frequency domain signal processing and analysis.	3	3	2	2	1	1	1	1	-	1	-	1	1	1	-
						C01	Site characterization and how to collect, analyse, and report geologic data using standards in engineering practice.	3	3	-	-	-	-	-	-	-	3	-	-	3	3	-
SEOLOGY	02					C02	The fundamentals of the engineering properties of Earth materials and fluids.	3	-	-	2	-	-	-	-	-	-	-	-	-	-	2
NEERING (BCIES1-4	4	2	30	200	CO3	Rock mass characterization and the mechanics of planar rock slides and topples.	-	2	-	-	-	-	-	-	-	-	-	-	-	2	-
ENGI						C04	Soil characterization and the Unified Soil Classification System.	2	-	-	-	-	-	-	-	-	-	3	-	3	-	-
						CO5	The mechanics of soils and fluids and their influence on settlement, liquefaction, and soil slope stability	2	2	-	-	-	-	-	-	-	-	-	2	3	-	-

DNINN						C01	To understand basic concepts in Disaster Management	2	-	2	-	-	-	2	-	-	-	-	-	-	-	2
ESS & PLAI	03					C02	To Understand Definitions and Terminologies used in Disaster Management	-	-	-	-	3	-	2	2	-	-	-	-	2	2	-
AREDN	CIES1-4	4	2	30	200	CO3	To Understand Types and Categories of Disasters	2	-	-	-	2	-	3	-	-	-	-	-	2	-	3
STER PREP	B					C04	To Understand the Challenges posed by Disasters	-	2	-	3	-	-	-	-	-	-	2	1	3	2	-
DISA						CO5	To understand Impacts of Disasters Key Skills	-	-	3	-	-	-	-	-	-	-	-	-	2	-	-
CHANICS						C01	Understand the broad principles of fluid statics, kinematics and dynamics.	3	2	1	-	-	-	-	-	-	-	-	-	3	-	-
LUID MEC	404					C02	Understand definitions of the basic terms used in fluid mechanics.	3	-	1	-	-	-	-	-	-	-	-	-	3	-	-
N TO F	CIES1-	4	2	30	200	CO3	Understand classifications of fluid flow.	2	3	-	-	-	-	-	-	-	-	-	-	3	-	-
DDUCTIO	В					C04	Be able to apply the continuity, momentum and energy principles.	3	3	2	-	1	-	-	-	-	-	-	-	3	-	1
INTR						00	Understand dimensional analysis.	3	3	-	-	-	-	-	-	-	-	-	-	3	-	-
INTRODUCTION TO SOLID MECHANICS	BCIES1-405	4	3	45	300	C01	Describe the concepts and principles, understand the theory of elasticity including strain/displacement and Hooke's law relationships; and perform calculations, relative to the strength and stability of structures and mechanical components;	3	3	-	_	-	-	-	_	-	-	-	2	2	-	-

						C02	Define the characteristics and calculate the magnitude of combined stresses in individual members and complete structures; analyze solid mechanics problems using classical methods and energy methods;	2	3	3	3	-	-	_	-	-	_	-	2	_	3	3
						CO3	Analyse various situations involving structural members subjected to combined stresses by application of Mohr's circle of stress; locate the shear center of thin wall beams	2	3	3	3	-	-	_	_	-	-	-	2	-	2	3
						CO4	Calculate the deflection at any point on a beam subjected to a combination of loads; solve for stresses and deflections of beams under unsymmetrical loading; apply various failure criteria for general stress states at points; solve torsion problems in bars and thin walled members.	2	3	3	3	_	_	_	_	_	_	_	2	_	2	3
ATICS ENGINEERING	BCIES1-406	4	3	45	300	C01	An ability to apply knowledge, techniques, skills and modern tools of mathematics, science, engineering, and technology to solve broadly-defined engineering problems appropriate to the discipline.	2	1	1	-	2	-	_	-	-	_	-	-	2	-	-
GEOM.						CO2	An ability to design systems, components, or processes meeting specified needs for broadly-defined engineering	1	1	2	-	-	-	-	-	-	-	-	-	-	2	-

							problems appropriate to the discipline.															
						CO3	An ability to apply written, oral, and graphical communication in broadly- defined technical and non- technical environments; and an ability to identify and use appropriate technical literature.	-	1	-	2	-	-	1	-	-	_	-	_	_	2	_
						CO4	An ability to conduct standard tests, measurements, and experiments and to analyze and interpret the results to improve processes; and An ability to function effectively as a member as well as a leader on technical teams.	-	2	-	-	-	-	-	_	2	-	-	_	_	-	2
UATION						C01	Planning an experimental program, selecting the test configuration, selecting the test specimens and collecting raw data	1	-	-	-	-	-	-	_	-	-	-	_	-	-	2
NLS, TESTING & EVAL	BCIES1-407	4	2	30	200	C02	Documenting the experimental program including the test procedures, collected data, method of interpretation and final results	-	2		3	-	-	-	-	-	-	-	-	-	3	-
MATERIA						CO3	Operating the laboratory equipment including the electronic instrumentation, the test apparatus and the data collection system	-	-	-	2	2	-	-	-	-	-	-	-	-	-	3

						CO4	Measuring physical properties of common structural and geotechnical construction materials	-	-	-	2	-	-	-	-	-	-	-	-	-	3	-
						CO5	Interpreting the laboratory data including conversion of the measurements into engineering values and derivation of material properties (strength and stiffness) from the engineering values	-	2	2	-	-	_	-	_	_	-	-	_	2	2	-
						006 CO6	Observing various modes of failure in compression, tension, and shear	-	-	-	3	-	-	-	_	_	-	-	_	-	3	-
						C07	Observing various types of material behaviour under similar loading conditions	-	-	2	-	-	-	-	_	_	-	-	_	-	3	-
DCIETAL & GLOBAL	-022					C01	The impact which Civil Engineering projects have on the Society at large and on the global arena and using resources efficiently and effectively.	-	-	2	-	-	_	3	_	_	-	-	_	-	-	2
sineering – So IMPAC	BHSMCO	4	2	30	200	C02	The extent of Infrastructure, its requirements for energy and how they are met: past, present and future.	-	-	-	-	-	-	3	2	-	-	-	-	2	3	-
CIVIL ENG						CO3	The Sustainability of the Environment, including its Aesthetics.	-	-	-	-	-	-	3		-	-	-	-	2	-	-

						CO4	The potentials of Civil Engineering for Employment creation & its Contribution to the GDP	-	-	-	-	-	-	-	-	-	-	-	1	-	3	-
						CO5	The Built Environment and factors impacting the Quality of Life	-	-	3	-	-	-	-	-	-	-	-	-	2	-	-
						00e	Applying professional and responsible judgment and take a leadership role	-	-	-	-	-	-	-	-	2	-	-	-	-	-	3
or)						C01	Technologies based on ecological principles and environmental regulations, which in turn helps in sustainable development.	_	-	3	-	-	2	3	-	-	-	-	-	3	-	-
ational Behavic)5					C02	Conceptualize the processes and various factors involved in the formation of environment.	1	-	-	3	-	-	-	-	-	-	-	-	-	1	2
	BMNCC0-00	4	0	45	300	CO3	Recognize the importance of environment and the sustainable natural resources.	-	-	-	-	-	-	3	-	-	-	-	3	-	-	2
IANAGEMENI						CO4	Use scientific reasoning to identify and understand environment problems and evaluate potential solution.	3	3	3	-	-	-	-	-	-	-	-	-	3	-	-
Σ						CO5	Identify the impacts of human activities on environment and role of society in these impacts and also the waste management.	3	-	_	-	_	_	-	-	3	-	-	2	_	2	2

igies Ab						C01	Use scientific reasoning to identify the various measuring instruments specifically related to Civil Engineering.	3	2	2	2	2	1	I	1	1	1	-	1	1	1	-
OR TECHNOLC	80					C02	Conceptualize the processes and various factors involved in identifying the need and use of different sensors	3	2	2	2	2	1	-	1	1	1	-	1	1	1	-
rion & sens sineering ⊿	BCIES1-40	4	1	30	002	CO3	Analyze the various performance characteristics of different sensors.	3	2	2	2	2	1	-	1	1	1	-	1	1	1	-
NSTRUMENTAT						CO4	Development electricaof basic understanding for calibration of instruments and detection of measuring errors.	3	2	2	2	2	1	-	1	1	1	-	1	1	1	1
=						CO5	Recognize the importance of signal processing and other sensor technologies.	3	2	2	2	2	1	-	1	1	1	-	1	1	1	-
						CO1	Ability to categorize rocks and minerals by their origin and engineering properties.	3	-	2	-	-	-	-	-	-	-	-	-	3	-	1
GEOLOGY LAB	1-409	1	1	20	0 2	C02	Ability to apply geological principles to rock masses and discontinuities for use in engineering design e.g. rock slopes, foundation.	-	3	3	-	-	2	_	_	-	-	-	-	3	2	1
IGINEERING	BCIES	4	Ţ	30	0 0	CO3	Gain an understanding of the societal relevance of Geological system.	3	_	2	2	-	3	_	_	2	-	-	2	3	-	3
EN						CO4	Life-long learning of students about the identification of minerals and rocks.	3	-	-	2	-	-	-	-	-	-	-	3	3	2	2

						C01	Be able to measure viscosity.	1	-	-	3	-	-	-	-	-	-	-	-	3	-	-
						C02	Understanding of pressure measuring devices.	2	2	_	3	_	_	_	_	_	-	-	-	3	-	-
						CO3	Predict the metacentric height of floating vessel and utility in vessel design.	3	-	-	3	-	-	-	-	-	-	-	-	3	-	-
						C04	Assess the hydrostatic force on flat surface/curved surfaces.	1	-	-	3	-	-	-	-	-	-	-	-	3	-	1
NICS LAB	110					CO5	Calibrate various flow measuring devices (venturimeter, orifice meter and notches).	3	-	2	3	1	-	-	-	-	-	-	_	3	-	-
ЛЕСНА	EIES1-4	4	1	30	0 0 2	CO6	Authenticate the Bernoulli's theorem experimentally.	3	-	-	3	-	-	-	-	-	-	-	-	3	-	-
	BI					C07	Predict impact of jets.	2	1	-	3	-	-	-	-	-	-	-	-	3	-	-
						CO8	Predict flow visualization-Ideal flow.	3	-	-	3	-	-	-	-	-	-	-	-	3	-	-
						60J	Determine length of establishment of flow.	3	2	_	3	_	_	-	-	_	-	-	-	3	-	-
						CO10	Compute velocity distribution in pipes.	3	-	_		_	_	-	-	_	-	-	-	3	-	-
						C011	To determine the transition from laminar to turbulent flow and to ascertain the lower critical Reynolds number.	3	2	-	3	1	-	-	-	-	-	-	-	3	-	1
CS LAB						C01	Understanding of the concepts of stress and strain.	3	-	2	-	-	3	2	-	-	-	-	-	-	-	2
MECHANIC	EIES1-411	4	1	30	002	C02	Determination of internal forces and deflections in the beam.	-	-	-	-	3	-	2	2	2	-	-	2	2	2	-
SOLID	В					CO3	Understanding the various methods of analysis of beams, trusses and effect of torsion.	2	-	3	-	2	-	3	-	2	-	-	3	2	-	3

						CO4	Application of the principles and basic of mechanics of solids in the civil engineering structures	-	2	-	3	-	-	-	-	-	-	2	1	3	2	-
DN LAB						C01	Learn about specimen preparation for examination all type of physical properties	3	3	-	-	-	-	2	-	2	-	-	-	3	-	-
& EVALUATIC	-412				2	CO2	Understand the characteristics of ferrous, nonferrous and composite material	3	3	-	-	-	-	-	-	-	-	-	-	3	3	-
SIALS, TESTING	BCIES1.	4	1	30	0 0	CO3	Conduct and analyse tensile, shear and compression tests of metallic and non-metallic specimen using universal testing machine	3	3	-	-	3	-	-	-	-	-	-	-	-	3	2
MATEF						CO4	Acquire knowledge of Brinnel's and Rockwell hardness tests	3	-	-	-	-	-	-	-	-	-	-	-	3	2	2
CONCRETE URES-I	l-501				0	C01	Identify the different failure modes and determine their design strengths.	3	3	3	-	-	-	-	-	-	-	-	-	2	3	-
DESIGN OF	BCIES:	5	3	45	3 0	CO4	Select the most suitable section shape and size for beams according to specific design criteria.	-	3	3	-	-	-	-	-	-	-	-	-	2	3	-
NALYSIS-I	502					C01	The students will possess the skills to solve statically determinate problems of structural analysis dealing with different loads.	2	3	3	-	-	-	-	-	-	-	-	-	3	3	-
UCTURAL A	BCIES1-5	5	4	60	310	C02	They will be able to apply their knowledge of structural analysis to address structural design problems.	3	3	3	-	-	-	-	-	-	-	-	-	3	3	1
STR						CO3	They will be able to calculate support reactions of all statically determinate structures	2	-	3	-	-	-	-	-	-	-	-	-	3	3	-

NEERING						C01	The students will be able to apply their knowledge of various phase diagrams and derive various phase relationships of the soil.	3	1	1	-	-	_	2	-	-	-	-	-	3	3	1
CAL ENGI	IES1-503	5	4	60	310	C02	The students will be able to apply their knowledge of index properties,	3	1	2	3	-	-	2	-	-	-	-	-	3	3	1
DTECHNIC	BC					CO3	The students will be able to apply their knowledge of the engineering properties of soil.	3	1	3	2	-	-	2	-	-	-	-	-	3	3	1
GEC						CO4	The students will be able to apply their knowledge of stability of slopes.	3	1	3	-	-	-	2	-	-	-	-	-	3	3	1
ting						C01	Estimate sewage generation and design sewer system including Sewage pumping stations.	2	-	3	-	-	-	1	-	-	-	-	-	3	3	-
AL ENGINEER	1-504	F	2	45	0 (C02	Required understanding on the characteristics and composition of sewage, self-purification of streams.	3	-	-	-	2	-	1	-	-	-	-	-	3	3	-
NMENT ^A	BCIES	5	3	45	3 (CO3	Perform basic design of the unit operations and processes for sewage treatment.	3	-	3	-	1	-	1	-	-	-	-	-	3	3	-
ENVIRO						CO4	An ability to develop and conduct appropriate experimentation, analyze and interpret data for future sewage generation & handling.	3	2	-	3	-	-	-	-	-	-	-	2	3	3	2
IICS-II	1					C01	Understand laminar and turbulent flows.	3	2	2	-	-	-	-	-	-	-	-	-	3	-	-
MECHAN	CIED1-51	5	3	45	3 0 0	C02	Learn about concepts of boundary layer theory.	1	2	3	-	-	-	-	-	-	-	-	-	3	-	-
FLUID	B(CO3	Design open channels for most economical sections.	1	3	3	-	-	-	-	-	-	-	-	-	3	2	-

						CO4	Will be able to understand surges, momentum principles, specific energy and GVF profiles.	2	3	3	-	-	-	-	-	-	-	-	-	3	2	-
IETHODS						C01	Understand the concepts related to Sustainable Development and its three pillars – economic, environment, and society.	3	-	-	-	-	2	2	-	-	-	-	2	3	-	-
ISTRUCTION N	ED1-512	5	3	45	300	C02	Understand of the 'modern' building material developed using advanced technologies and testing methods.	3	-	2	-	3	-	-	-	-	-	-	2	3	-	1
AINABLE CON	BCI					CO3	Application of recycled/ reconstructed building materials in the construction of green buildings	3	-	-	-	-	2	3	-	-	-	-	2	3	2	-
SUST,						CO4	Describe the basic provisions of the Bureau of Indian standards related to select building material.	3	2	2	-	-	-	-	-	-	-	-	3	3	2	-
Z						C01	To understand the behaviour of fresh and hardened concrete.	3	-	-	-	-	-	-	-	-	2	-	2	3	-	-
STRUCTIC .0GY	513					C02	To make aware the recent developments in concrete technology.	3	-	2	-	-	3	-	-	-	2	-	2	3	2	1
DNCRETE CON: TECHNOL	BCIED1-	5	3	45	3 0 0	CO3	To understand factors affecting the strength, workability and durability of concrete.	-	3	-	3	-	-	-	-	-	-	-	-	3	3	-
ŭ						C04	To impart the methods of proportioning of concrete mixtures.	3	-	2	-	-	-	-	-	-	3	-	-	3	-	3

						C01	Predict the properties of building stones and its classifications.	2	2	-	-	-	-	1	-	-	-	-	-	2	2	-
						C02	Understand the concept of various methods of manufacture of bricks.	2	-	2		1	-	-	-	-	-	-	1	3	2	-
TRUCTION						CO3	Explain various types of cements and their applications in construction. Various field and laboratory tests on cement	3	-	-	2	-	-	1	-	-	-	-	-	3	3	-
NALS & CONS	IED1-521	5	2	30	2 0 0	40J	Analyze the importance of mineral and chemical admixtures, requirements of the concrete in construction	2	3	-	-	-	-	-	-	-	-	-	-	2	2	-
UILDING MATER	BC					CO5	Explain the suitability of floors in buildings like mosaic flooring, terrazzo flooring, rubber flooring, asphalt flooring.	2	-	2	-	-	-	-	-	-	-	-	-	3	2	-
8						C06	Explain the foundations and uses of different types of foundations.	3	1	-	-	1	-	-	-	-	-	-	-	2	1	-
						C07	Classification of various types of woods and properties, seasoning of timber.	2	-	1	-	-	-	-	-	-	-	-	-	3	2	-
THODS	2					C01	Identify the application potential of numerical methods.	3	3	-	1	-	-	-	-	-	-	-	-	3	3	1
RICAL ME	CIED1-52	5	2	30	200	C02	Solve Civil engineering problems using numerical methods.	3	1	-	1	-	-	-	-	-	-	-	-	3	3	-
NUMEI IN CIVI	B					CO3	Demonstrate application of numerical methods to civil engineering problems.	3	2	-	-	1	-	-	-	-	-	-	-	3	2	1

						C04	Apply differential equations and integration to solve civil engineering problems.	3	-	-	2	1	-	-	-	-	-	-	-	3	3	-
						CO5	Outline and Propose the finite difference techniques.	2	1	_	2	1	-	-	_	_	_	_	-	3	2	1
						C06	Apply the concept of partial differential equations and Solve practical problems.	3	2	-	2	1	-	-	-	-	-	-	-	3	3	1
RING						C01	Mechanics of river flow, aggradations and degradation, measurements in rivers.	1	3	3	-	-	-	-	-	-	-	-	-	3	-	-
GINEE	D1-523	5	2	30	00	C02	Physical river models.	2	2	3	-	2	-	-	-	-	-	-	-	3	2	-
VER EN	BCIE				2	CO3	River training works.	2	2	3	-	-	-	-	-	-	-	-	_	3	-	-
RI						CO4	Design of river training and flood protection structures.	1	2	3	-	_	_	_	-	-	-	_	-	3	-	-
						C01	Determine the consistency, setting time, fineness, specific gravity, compressive strength, etc. of cement.	2	-	-	3	-	-	-	-	-	1	-	-	3	2	-
INOLOGY LAB	-505				2	C02	Determine the fineness modulus, grading, density & specific gravity of aggregates.	2	-	-	3	-	-	-	-	-	1	-	-	3	2	-
DNCRETE TECH	BCIES1.	5	1	30	00	CO3	Determine the shape & size, compressive strength and water absorption of bricks & pavers.	2	-	-	3	-	-	-	-	-	1	-	-	3	2	-
5						C04	Describe the properties of concrete & knowledge of concrete mix design philosophy.	3	2	-	3	-	-	-	-	-	1	-	-	3	3	-

						CO5	Determine the optimum dose of admixtures for concrete.	2	-	-	3	_	_	_	-	-	1	-	-	3	2	_
						606	Give practical exposure of laboratory testing for manhole covers.	2	-	_	2	_	-	_	-	-	1	-	-	3	2	-
						C01	Students will be able to effectively link the theory / analytical concepts.	2	2	-	3	-	-	-	-	-	-	-	-	3	3	1
ALYSIS LAB	06					C02	They will be able to demonstrate the background of the theoretical aspects, with practice and application.	2	-	-	3	2	-	-	-	-	-	-	-	3	3	-
STRUCTURAL AN	BCIES1-5	5	1	30	002	CO3	They will be able to generate and analyze data using experiments and develop observational skill by the exposure to equipment and machines.	-	3	_	3	1	-	-	-	-	-	-	-	3	2	1
						CO4	They will be able to use computing tools in analyzing and presentation of the experimental data.	-	2	-	3	2	-	-	-	-	2	-	-	3	3	1
IGINEERING LAB	-507				2	C01	Have thorough knowledge about the procedures of laboratory tests used for determination of physical, index and engineering properties of soils	3	1	3	-	-	_	2	-	-	-	-	-	3	3	3
CHNICAL EN	BCIES1	5	1	30	0 0	C02	Have the capability to classify soils based on test results and interpret engineering behavior based on test results	3	1	1	-	-	-	2	-	-	-	-	-	3	3	3
GEOTE						CO3	Be able to evaluate the permeability and shear strength of soils	3	1	1	-	-	-	2	-	-	-	-	-	3	3	3

						CO4	Be able to evaluate settlement characteristics of soils	3	1	3	-	-	_	2	-	-	-	-	-	3	3	3
						CO5	Be able to evaluate compaction characteristics required for field application	3	1	3	-	-	-	2	-	-	_	-	-	3	3	3
						C01	Discuss about importance of water and its quality analysis.	2	3	-	3	-	2	-	-	-	-	-	-	3	3	-
EERING LAB						C02	Analyse various physico- chemical and biological parameters of water in case of quality requirements.	3	3	-	3	-	-	-	-	-	-	-	-	3	3	-
AL ENGIN	IES1-508	5	1	30	0 0 2	CO3	Assess complete water quality assessment for EIA and domestic supplies.	-	-	3	3	-	-	2	-	-	-	-	-	3	3	-
VIRONMENT	BC					CO4	Suggest various types of treatment methods required to purify raw water with different contaminants.	3	-	3	3	-	-	-	-	-	-	-	-	3	3	-
EN						CO5	Assess complete waste water quality assessment for their disposal.	2	3	-	3	-	-	-	-	-	-	-	-	3	3	-
TION OF INDIA	CC0-001	5	0	30	0 0	C01	Able to understand historical background of the constitutional making and its importance for building a democratic India, the structure of Indian government, the structure of state government, the local administrations.	-	_	2	_	_	_	-	3	-	-	-	-	2	-	-
CONSTITUT	BMN(2	C02	Able to apply the knowledge on directive principle of state policy, the knowledge in strengthening of the constitutional institutions like CAG, Election Commission and UPSC for sustaining democracy.	-	-		-	-	-	2	-	-	-	-	-	-	2	

						CO3	Able to analyze the History, features of Indian constitution, the role Governor and Chief Minister, role of state election commission, the decentralization of power between central, state and local self-government.	-	-		-	-	2	-	-	-	3	-	-	-	-	1
						CO4	Able to evaluate Preamble, Fundamental Rights and Duties, Zilla Panchayat, block level organization, various commissions like SC/ST/OBC and women.	-	_		_	-	Ι	-	-	2	-	-	_	-	1	Т
RES-I						C01	Identify the different failure modes of bolted and welded connections, and determine their design strengths.	-	-	2	-	-	-	-	-	-	-	-	-	3	2	-
STEEL STRUCTU	3CIES1-601	6	ß	45	300	C02	Identify the different failure modes of steel tension and compression members and beams, and compute their design strengths.	-	2	3	2	-	-	-	-	-	-	-	-	3	3	-
DESIGN OF						CO3	Select the most suitable section shape and size for tension and compression members and beams according to specific design criteria.	-	2	2	3	-	_	-	-	-	-	-	-	3	3	2
AL ANALYSIS-II	:S1-602	6	£	45	0 0	C01	The students will possess the skills to solve statically indeterminate problems of structural analysis dealing with different loads.	2	3	3	-	_	-	-	-	-	-	-	_	3	3	-
STRUCTUR	BCIE					C02	They will be able to apply their knowledge of structural analysis to address structural design problems.	3	3	3	-	-	-	-	-	-	-	-	-	3	3	1

						CO3	They will be able to calculate support reactions of statically indeterminate structures.	2	-	3	-	-	-	-	-	-	-	-	-	3	3	-
						C01	The student will learn about essentials of highway planning and features of highway development in India.	-	-	-	-	-	2	-	1	-	3	-	1	3	-	-
NGINEERING-I	03					C02	The student will learn how to do selection of highway alignment and design the geometric elements of highways.	2	-	3	2	-	-	-	-	-	-	-	-	-	2	1
ISPORTATION E	BCIES1-6	6	3	45	300	CO3	The student will learn how to carry out traffic studies and implement traffic regulation and control measures and intersection design.	-	-	-	3	2	-	-	-	-	1	1	-	-	-	2
TRAN						CO4	The student will know about characteristic properties of road construction materials and design the flexible and rigid pavements as per IRC guidelines.	-	3	-	-	-	-	1	-	2	2	-	1	3	-	-
(1)						C01	Learn about types and purposes of different foundation systems and structures.	3	2	3	2	-	_	2	-	-	-	-	-	3	3	2
SINEERING	14					CO3	Have an exposure to the systematic methods for designing foundations.	3	2	3	3	-	-	2	-	-	-	-	-	3	3	2
JNDATION ENG	BCIES1-60	6	3	45	300	C04	Be able evaluate the feasibility of foundation solutions to different types of soil conditions considering the time effect on soil behavior	3	2	3	2	-	-	2	-	-	-	-	-	3	3	2
FOL						CO4	Have necessary theoretical backgroundi for design and construction of foundation systems.	3	2	3	2	-	-	2	-	-	-	-	-	3	3	2

						C01	Recognize the concepts, techniques and modernization of irrigation.	3	2	3	-	2	-	-	-	-	-	-	-	3	-	-
RING –						C02	Plan and design lined and un- lined canals for irrigations.	2	1	3	-	-	-	-	-	-	-	-	-	3	2	-
N ENGINEE	IED1-611	6	2	30	2 0 0	CO3	Apply different theories/ methods to design lined and un-lined canals.	2	3	3	-	-	-	-	-	-	-	-	-	3	2	-
GATION	BC					C04	Learn losses in canals and its control measures.	1	2	3	_	2	-	_	_	_	-	-	-	3	-	-
IRRI						CO5	Design and construction of well and tube well.	1	3	3	_	2	-	_	-	_	-	-	-	3	1	-
						C06	Learn about river training works.	3	2	2	_	2	-	_	_	-	-	-	-	3	-	1
/SIS						C01	Students will be able to analyze skeletal i.e. framed structures.	3	3	-	-	-	-	-	-	-	-	-	-	3	3	-
DS OF ANAL	1-612	6	2	30	0 0	C02	They will be able to differentiate between the flexibility and stiffness methods of structural analysis.	3	3	-	-	1	-	-	-	-	-	-	-	3	3	1
MATRIX METHC	BCIED	5	L	50	2	CO3	They will be able to access computers that permits the use of the stiffness method for analyzing traditional civil engineering structures, air frame, space structures etc.	2	3	-	-	3	-	-	-	-	-	-	-	3	3	-
SUPPLY ITATION	13					C01	Knowledge about water supply scheme in rural areas.	3	-	-	-	-	2	2	-	-	-	-	-	3	3	-
RURAL WATER & ONSITE SANI	BCIED1-6	6	2	30	200	C02	Knowledge about environmental sanitation methods and design in rural areas.	3	-	3	-	-	2	2	-	-	-	-	-	3	3	-

G &						C01	Learn the structure of construction companies	-	_	_	_	_	-	_	_	_	-	-	-	-	-	-
PLANNIN						C02	Learn the management functions of construction companies	-	-	-	-	-	-	-	1	-	-	2	-	2	-	-
ROJECT TEMS	01-621	6	2	30	0 0	CO3	Practice contract management applications	-	-	-	-	-	-	-	-		-	2	-	-	-	2
TION PF SYS	BCIED	C	_		2	C04	Use project management applications	-	_	-	_	_	-	_	-	2	-	3	-	_	-	3
STRUC						CO5	Plan construction projects	-	-	-	-	-	-	-	-	-	-	2	_	2	_	2
CON						C06	Gain information about construction risk analysis.	-	_	-	_	_	-	_	_	_	-	3	-	-	-	3
TICE						C01	Identify the components of building and understand the impacts on materials.	2	3	-	-	-	-	-	-	-	-	-	-	3	-	-
RUCTION PRAC	D1-622	6	2	30	0 0	C02	Identify the factors to be considered in the construction of buildings and develop the construction practices and techniques.	3	_	3	-	-	-	-	-	2	-	-	3	3	-	-
NG CONST	BCIE				2	CO3	Identify the practices for Sub Structure and Super Structure construction.	3	3	3	-	-	-	-	-	-	-	-	-	3	2	-
BUILDIN						C04	Identify the importance of sustainable development/construction approach.	3	-	-	I	I	2	3	-	I	-	-	-	3	-	2
NT DESIGN	01-623	6	2	30	0 0	C01	The students will learn about how to design the crust thickness of highway and airfield pavements.	3	-	-	2	-	1	-	-	-	-	-	2	3	-	-
PAVEME	BCIED	5	-	50	2	CO2	They will learn the design principles and methods of flexible and rigid pavements being used worldwide.	-	3	-	1	2	-	2	-	-	-	-	-	-	2	-

						CO3	They will learn in detail the design methods prescribed by the Indian Roads Congress for flexible and rigid pavements in India	-	-	3	-	2	-	-	2	1	1	_	-	3	-	2
						CO4	The students will get exposure to methodology of strengthening of existing pavement structures and some modern pavement design concepts.	-	-	-	3	1	I	-	1	-	2	2	Ι	-	1	-
Т						C01	An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, welfare, and environmental factors.	3	_	3	_	-	-	2	_	-	-	_	_	3	3	-
WATER TREATMEN	01-631	6	3	45	0 0	C02	An ability to develop and conduct appropriate experimentation, analyze and interpret data for future demand & supply.	2	-	-	3	-	-	-	-	-	_	_	3	3	3	-
ER & WASTEV	BCIEI				3	CO3	Estimate sewage generation and design sewer system including Sewage pumping stations.	3	-	3	-	-	-	1	-	-	-	-	-	3	3	-
WAT						C04	Required understanding on the characteristics and composition of sewage, self Purification of streams.	3	-	-	-	-	-	1	-	-	-	-	-	3	3	-
						CO5	Perform basic design of the unit operations and processes for sewage treatment.	2	-	3	-	-	-	1	-	-	-	-	-	3	3	-

QUES						C01	Ability to understand the necessity of ground improvement and potential of a ground for improvement	3	2	3	2	-	_	2	-	-	-	-	-	3	2	2
VEMENT TECHNI	ED1-632	6	3	45	300	C02	To gain comprehensive understanding about the improvement of in-situ cohesive soils as well as Cohesion less soils	3	2	3	2	-	_	2	_	_	-	_	_	3	3	2
ground Impro	BCI					CO3	Competence to analyze an in- situ ground, identification of ground improvement techniques feasible, selection of the ideal method, its planning , design, implementation and evaluation of improvement level	3	2	3	2	_	_	2	_	_	_	_	_	3	2	2
GEMENT						C01	The students will learn about various engineering methods used for construction and maintenance of different types of pavement structures.	3	-	-	2	-	-	1	-	-	Ι	2	Ι	3	_	-
RUCTION AND MANA	BCIED1-633	6	3	45	300	C02	The student shall get familiar with the methods of evaluation of pavement structures to undertake various types of maintenance management strategies.	-	1	3	-	-	_	-	2	1	2	_	-	-	3	1
PAVEMENT CONST						C03	They will learn the concept of pavement management system and pavement performance prediction, which will not only help them in field applications but also in research at the postgraduate level after completion of their graduation	-	3	-	-	2	2	-	-	-	_	_	2	-	_	3

EERING						C01	The students will gain an experience in the implementation of Earthquake Engineering on engineering concepts which are applied in field Structural Engineering.	-	3	2	2	-	_	_	-	_	-	-	_	3	2	-
HQUAKE ENGIN	BCIED1-634	6	З	45	300	C02	The students will get a diverse knowledge of earthquake engineering practices applied to real life problems.	2	3	-	-	-	-	-	-	-	-	-	-	-	3	-
EART						CO3	The students will learn to understand the theoretical and practical aspects of earthquake engineering along with the planning and design aspects.	-	3	_	2	_	_	_	-	_	-	-	_	2	3	-
DRTATION ERING LAB	S1-605	6	1	30	0 2	C01	The student will learn the laboratory testing of different kinds of highway construction materials such as Soil, Aggregate and Bitumen.	3	1	Ι	2	1	Ι	2	-	_	1	1	-	3	-	1
TRANSPO	BCIE				0	C02	The student will learn to check the suitability of highway construction material so as to exercise better quality control in a road construction project.	-	-	3	-		1	-	1	2	-	2	1	-	3	-
IDED CIVIL DRAWING	-606					C01	Design and draw working structural drawings of various concredence ete structures and their members.	3	-	3	-	3	-	-	-	-	-	-	-	3	-	2
PUTER-A NEERING	BCIES1-	6	1	30	005	C02	Understand and interoperate design aids and handbooks.	3	-	-	3	-	-	-	-	-	3	-	2	3	-	-
COM ENGI						CO3	Use of relevant Indian Standard specifications	3	-	2	-	-	-	-	-	-	-	-	-	3	3	-

							applicable to Reinforced concrete structures															
IRES-II						C01	Identify and compute the design loads on RCC components.	3	2	-	-	-	-	-	-	-	-	-	-	3	-	-
STRUCTU	01					C02	Able to analyze and design with detailing RCC members.	-	3	2	3	-	-	-	-	-	-	-	-	-	3	-
DF CONCRETE	BCIES1-70	7	3	45	300	CO3	Ability to design and check for serviceability (crack and deflection) and ultimate limit state conditions.	-	3	3	2	-	2	-	-	2	-	-	-	-	3	2
DESIGN C						CO4	Apply relevant Indian Standard provisions to ensure safety and serviceability of RCC structural elements.	3	-	-	3	-	-	-	-	-	-	-	3	2	-	-
						C01	Understand the preparation of an abstract estimate for a residential building, roads, irrigation projects, bridges, etc.	2	2	-	-	-	-	-	-	-	-	2	-	2	-	2
LAW						C02	Analyse the units for various quantities of items of work.	-	2	-	2	-	-	-	-	-	-	-	-	-	-	-
rice & I						CO3	Evaluate the rates for various items of work	2	2	-	-	-	_	-	-	-	-	-	-	2	_	-
AL PRACI	CIES1-702	7	3	45	300	CO4	Design and prepare bar bending schedule for reinforcement works.	-	_	2	-	-	-	-	-	-	-	2	-	-	2	-
OFESSION	BC					CO5	Understand how to prepare a Notice inviting tender document for bidding.	2	-	-	-	-	-	-	-	-	-	2	-	-	2	-
ЧЧ						CO6	Evaluate the valuation of building.	2	-	-	2	-	1	-	-	-	-	-	-	-	2	-
						C07	Preparation of standard specifications for different items of building construction.	-	-	2	-	-	1	-	-	-	-	2	-	2	2	-

i-II						C01	To study types of diversion headworks, seepage theories.	1	-	3	-	-	-	-	-	-	-	-	-	3	-	-
EERING	1					C02	To design weirs.	2	-	3	-	-	-	-	-	1	-	-	-	3	1	-
ENGIN	ED1-71	7	2	30	200	CO3	To learn about spillways.	2	-	3	-	_	-	_	-	-	-	-	-	3	-	-
RIGATION	BCI					CO4	Design of canal regulators, canal falls, cross drainage works.	1	2	3	-	-	-	-	-	1	-	-	-	3	1	-
IR						CO5	Classify canal outlets, design outlets.	1	2	3	-	-	-	-	-	-	-	-	-	3	-	1
DNTROL						C01	Explain basic principles on various aspects of atmospheric chemistry.	3	-	-	-	-	3	-	-	-	-	-	-	3	3	-
N AND CC	12					C02	Identify the major sources, effects and monitoring of air and noise pollutants.	3	3	-	-	-	3	-	-	-	-	-	-	3	3	-
NOISE POLLUTION ANI BCIED1-712	7	2	30	200	CO3	Understand the key transformations and meteorological influence on air and noise.	3	-	-	-	-	3	2	-	-	-	-	-	3	3	-	
AIR & NO						CO4	Relate and analyse the pollution regulation on its scientific basis.	3	3	-	_	_	3	-	-	-	-	-	-	3	3	-
SIGN						C01	Learn about types and purposes of different underground structures.	3	2	3	2	-		2	-	-	-	-	-	3	2	2
NICAL DES	CHNICAL DESIGN	7	2	30	2 0 0	C02	Have an exposure to the systematic methods for designing foundations.	3	2	3	2	-	_	2	-	-	-	-	-	3	3	2
GEOTECHNICAL I BCIED1-71					CO3	Be able evaluate the feasibility of foundation solutions to different types of soil conditions considering the time effect on soil behavior.	3	2	3	2	-	-	2	-	-	-	-	-	3	2	2	

						CO4	Have necessary theoretical background for design and construction of foundation systems	3	2	3	2	-	-	2	-	-	-	-	-	3	2	2
ETE						C01	Students will understand the general mechanical behavior of prestressed concrete.	3	-	-	-	-	-	_	-	-	-	-	-	2	2	-
ESSED CONCR	3CIED1-721	7	2	30	200	C02	Students will be able to analyze and design prestressed concrete flexural members.	-	3	3	3	-	-	_	_	-	-	-	-	3	3	-
PRESTR						CO3	Students will be able to analyze and design for vertical and horizontal shear in prestressed concrete.	-	3	3	3	-	-	_	-	-	-	-	-	3	3	-
ENT						C01	Do sampling and characterization of solid waste.	3	-	-	-	-	3	_	_	_	-	-	-	3	3	-
MANAGEM						C02	Analysis of hazardous waste constituents including QA/QC issues	-	3	-	-	-	3	2	-	-	-	-	-	3	3	-
HAZARDOUS WASTE	BCIED1-722	7	2	30	200	CO3	Apply steps in solid waste management like waste reduction at source, collection techniques, recycling, transport, optimization of solid waste.	_	3	3	_	_	3	_	_	_	_	_	_	3	3	2
SOLID &						C04	Analyse treatment & disposal techniques and economics of the onsite vs. offsite waste management.	-	3	3	-	-	3	-	-	-	-	1	-	3	3	2

N OF						C01	Know the strategies of maintenance and repair.	1	1	_	-	-	1	-	-	-	-	-	-	1	-	-
ITATION KES	23					C02	Understand the properties of repair materials.	1	1	_	-	-	1	_	_	-	-	-	-	1	_	-
EHABILI	IED1-7	7	2	30	200	CO3	Understand the various properties of concrete.	1	1	-	1	-	1	-	-	-	-	-	-	1	-	-
AR & RI STF	BC					CO4	Get an idea of repair techniques.	1	1	_	1	-	1	-	_	-	-	-	_	1	1	-
REPA						CO5	Understand the retrofitting strategies and techniques.	1	1	_	1	1	1	-	_	-	-	-	-	1	-	1
/ARE LAB	S1-704	7	1	30	0 2	C01	To design the whole project like roads, building etc. with the help of softwares	-	3	3	2	3	-	-	-	-	-	-	2	2	3	-
SOFTW	BCIE				0	C02	To deal with project management in real time	-	-	-	-	-	-	-	-	3	-	3	3	-	-	3
						C01	Know about Vedas, Upavedas, Vedangas, etc.	-	-	-	-	-	2	-	2	-	-	-	-	2	-	1
DGE TRADITION						C02	Provide important insight into the processes of observation, mitigation, and adaptation of changes in climate.	-	-	2	-	-	2	-	-	-	-	-	-	3	-	1
F INDIAN KNOWLEI	BMNCC0-006	7	0	30	200	CO3	Understand Indian knowledge system with knowledge, innovations and practices of indigenous and local communities around the world.	-	-	-	-	-	3	-	2	-	-	-	-	3	-	1
ESSENCE O						CO4	Know the importance of Yoga, including conscious breathing, meditation, lifestyle and diet changes, visualization, etc. in human life.	-	-	-	-	-	3	-	-	-	-	-	-	2	-	-

						CO5	Know about ancient Indian knowledge systems with case studies.	-	-	-	-	-	3	-	-	-	-	-	-	2	-	_
II-9N						C01	The students will learn about importance of railways and Air transportation systems in the social and economic development of the country.	-	3	-	-	-	2	-	1	-	3	-	1	-	3	-
DRTATION ENGINEERI	BCIES1-801	8	3	45	300	CO2	The students will come to know about engineering aspects of components of railway track and its geometric design, layouts of stations and yards, and railway signaling and interlocking systems.	2	-	3	2	_	_	2	_	1	-	-	_	3	1	Т
TRANSPI						CO3	The students will learn about planning and design of runway and taxiway, airport configurations and visual aids required for safe and efficient air transportation system.	-	-	-	3	2	_	-	-	_	1	1	-	-	-	3
S-II						C01	Identify and compute the design loads on a typical steel building.	3	2	-	-	-	-	-	-	-	-	-	-	3	-	-
TRUCTURE	811					C02	Able to analyze and design with detailing of steel flexural members.	-	3	2	3	-	-	-	-	-	-	-	-	-	3	-
GN OF STEEL S	BCIED1-8	8	3	45	3 0 0	CO3	Ability to design and check for serviceability (crack and deflection) and ultimate limit state conditions.	-	3	3	2	-	2	-	-	2	-	-	-	-	3	2
DESIG						CO4	Apply relevant Indian Standard provisions to ensure safety and serviceability of structural steel elements.	3	-	-	3	-	-	-	-	-	-	-	3	2	-	-
PORT &	BCIED	8	3	45	300	C01	The students shall learn about the importance and application	3	-	-	1	-	2	-	-	-	1	-	2	-	3	-

							of fourth major mode of transportation, i.e., waterways, after covering highways, railways, and airports in the previous semesters.															
						C02	They will understand the need for providing various civil engineering structures at the ports and harbours, and their construction, maintenance, and navigational aspects.	-	3	-	1	2	-	2	-	-	-	2	Ι	-	2	-
						CO3	They will come to know about the functions of different components of harbours and ports for the purpose of safe and efficient water transportation.	-	-	3	Ι	Ι	-	-	2	I	1	-	-	3	I	1
E CYCLE						C01	Knowledge about EIA tools & methodologies, auditing and documentation of EIA.	3	-	-	I	I	3	-	-	I	-	-	-	3	3	-
PACT ASSESSMENT & LIF ANALYSES	BCIED1-813	8	3	45	300	CO2	Students will gain competency and understanding of the significance of chemical and biological reactions in environmental problems and solutions.	3	_	3	-	-	3	-	-	-	_	-	_	3	3	-
MENTAL IN						CO3	Students will understand the theory behind the analytical techniques.	3	-	-	-	3	-	-	-	-	-	-	-	3	3	-
ENVIRON						C04	Students will learn the use of microbiological methods for treating water and waste water.	3	-	3	-	-	3	-	-	-	-	-	-	3	3	-

						C01	Understand the interaction among various processes in the hydrological cycle.	1	2	1	-	-	-	-	-	-	-	-	-	3	-	-
RING HYDROLOGY	CIED1-821	8	2	30	200	C02	Calculate the average annual rainfall of any area using the rain gauge data and inter- relations of various parameters as infiltration, evapo- transpiration etc.	-	2	3	_	_	-	_	-	_	_	-	-	3	-	_
ENGINEEF	B(CO3	Understand the various components of hydrographs and to estimate the run-off.	1	-	3	-	-	-	-	-	-	-	-	-	3	-	-
						CO4	Estimation of peak flows by rational method, unit hydrograph theory, Gumbels's method.	1	2	3	-	-	-	-	-	-	-	-	-	3	-	1
(1)						CO1	The students will learn about the planning and construction of bridges, which is one of the most important components of the transportation infrastructure.		3	-	1	-	2	-	-	-	1	-	2	-	-	3
DGE ENGINEERING	BCIED1-822	8	2	30	200	C02	They will learn about different types of bridges, their choice, site selection, loads, with special emphasis on RCC and steel bridges.	-	-	3	-	2	-	2	-	1	-	2	-	3	2	-
BRI						CO3	They will also learn about components of sub-structure and super-structure of the bridges along with construction and maintenance aspects of bridges.	3	_	2	_	-	-	_	2	-	1	-	-	-	3	1

ECHNIQUES	3					C01	Competence in identification of ideal geo-synthetic function and ability to select the ideal product to serve the function.	3	2	2	2	-	_	2	-	-	-	-	-	3	2	2
IFORCING TI	BCIED1-82	8	2	30	200	C02	Ability to analyse and design the application of geo- synthetics.	3	2	1	2	-	-	1	-	-	-	-	-	2	2	1
SOIL REIN						CO3	Competence construction practices and evaluation of post construction improvement.	3	2	2	2	-	-	2	-	-	-	-	-	3	2	2
RIAL STRUCTURES	CIED1-824	8	2	30	200	C01	Various distress and damages to concrete and masonry structures, the importance of maintenance of structures, types and properties of repair materials etc.	2	3	3	3	2	2	П	П	_	_	Ι	П	3	3	-
INDUSTF	B					C02	Assessing damage to structures and various repair techniques.	-	_	-	-	3	2	-	-	_	-	2	-	-	3	3
FING LAB						C01	Perform different NDTs on hardened concrete & highway.	3	-	1	3	-	-	-	-	-	-	-	-	3	3	-
ON & TESI	-802				2	C02	Improve quality control during construction.	3	2	-	3	-	-	-	-	-	-	-	1	3	3	-
NSPECTION	BCIES1-	8	1	30	00	CO3	Improve product reliability.	2	2	-	3	-	-	-	-	-	-	-	1	3	3	-
NCED IN						C04	Give information on repair criteria.	2	3	-	3	-	-	-	-	-	-	-	-	3	3	1
ADVA						CO5	Predict accident prevention analysis and to reduce costs.	3	3	-	3	-	-	-	-	-	-	1	1	3	3	1

nment						C01	Understand importance of safety at work	1	2	3	1	1	3	2	2	3	3	3	3	2	3	3
ty and Enviro	1EE0-F91	8	3	38	300	C02	Understand various safety measures and how it leads to increasing plant productivity.	2	2	3	3	2	2	2	1	3	3	3	3	3	3	3
ial Safe	ΒN					CO3	Understand basics of environmental design	2	3	3	3	2	3	3	2	2	3	1	3	2	3	2
Industr						C04	Understand the control of Ventilation and heat etc.	2	2	3	3	2	3	3	1	2	2	1	3	3	2	3